and Correspondence Analysis A comparison between Hudap

Fabrice Buschini

LPS - EHESS (Paris)

The data file:

- articles on SR. Results of a content analysis on 407
- Meta-analysis conducted by Professor Annamaria de Rosa's team.
- 30 variables or categories.

The variables:

- descriptive variables The first six (V1 to V6) can be considered as
- They are related to the form of the articles (language) author's country, publication year, type of publication

etc.)

- variables which can be called active variables The last twenty-four (V7 to V30) are the main
- They are concerned with the content of the articles (methodology employed, process described, etc.).

(WSSA procedure) The Hudap's principles

- The WSSA belongs to the family of MDS (multidimensional scaling)
- MDS tries to represent in a small space (2 or 3 dimensions) the distances (or proximities) existing between variables.
- Guttman. of proximity: the monotonicity coefficient of In Hudap, the distance measure in an index

Monotonicity coefficient

- Can be compared to a correlation coefficient, but not necessarily a linear one.
- Measures the way two variables vary broadly in the same sense.
- as much as they vary in the same sense. Then two variables can be considered close in

Examples of monotonous relations between two variables

Examples of non monotonous relations between two variables

Note!

The Wssa in Hudap can be used only for coefficient is meaningful. thoses variables for which the Guttman's

Four levels of measurement

- Ratio level: continuous measure with a zero point. It metric system) conserves order, deviation, and is proportional (e.g.
- not proportional (e.g. temperature scale) zero point. It conserves order and deviation, but it is Interval level: continuous measure with or without
- Ordinal level: discontinuous measure. Conserves social classes) order, but nothing can be said on deviation (e.g.
- Nominal level: discontinuous measure. Nothing can gender, language) be said on the relations between values (e.g.

Back to the data file

- Most of the variables are nominal ones, some are
- With this kind of variables, to calculate the monotonicity ordinal

coefficient is raher meaningless

3=objectivation, 4=both), it then means thoses two If one finds a high positive coefficient between the variables LANGUAGE (1=italian, 2=english, 3=french, the order of categories was arbitrarily chosen? really mean anything, especially when one knows that variables are varying in the same sense. But does it 4=spanish) and PROCESS (1=no, 2=anchorage,

Solution

- Transformation of variables with a
- disjunctive coding The principle is to create for each variable as for the former one. many new variables as modalities existing

Example: variable « language »

coding Advantages of disjunctive

- Wssa can be run because the monotonicity coefficient makes sense here
- Correspondence analysis can also be conducted on the data
- the two methods on the same data Therefore, a comparison can be made between

and Anacor Differences between Wssa

- Wssa
- The distance index is the monotonicity coefficient
- Interpretations are made on proximities and spatiality

- Anacor
- The distance index is the khi square distance
- Interpretations are made on factors

Preparing the common data file

- variables (58 for the descriptive ones and 178 for the others) After re-coding, the 30 original variables gave birth to 236 new
- should be deleted Of those new variables, 16 have a null variance and then
- They correspond to 16 uused modalities in the 30 original variables
- data more homogeneous, the new variables with a frequency In order to reduce the number of variables and to make the lower than 10 (2.5%) were coupled with other close variables
- analysis in order to reduce the number of categories This procedure is equivalent to come back on the content

analyses The final data file used for both

- After erasing the problematic variables, 116 remain
- 27 for the descriptive variables
- 89 for the active variables
- Some variables could remain problematic
- One with a frequency lower than 10 (V18_3)
- Twelve coming from 6 original variables with too unequal categories (>94 % and <6 %)
- V12_1,2 (383/24); V24_1,7 (389/18); V25_1,7 (396/11); V27_1,5 (388/19); V28_1,5 (396/11); V29_1,9 (385/22)

Five analyses were conducted on different numbers of variables

- On all the 89 variables
- dichotomous ones: 80 variables After deleting one variable for each of the nine
- The former minus all the variables coming from the original GNS, MTH, CST and THM: 59 variables
- The former minus all the variables coming from the 48 variables original GRL, GRA, OBS, VRB, FIG, BEH and MED:
- Only on the 16 variables coming from the original ST, AIM, RDES and RLOC

Fit indexes for both methods in function of the number of variables

Wssa for the 89 variables

Factorial space 1x2 for the 89 variables

Contributing variables on the two first dimensions (anacor89)

Factorial space 1x2 with contributing points (89)

Wssa with contributing point on anacor89

Wssa for the 80 variables

Factorial space 1x2 for the 80 variables

Contributing variables on the two first dimensions (anacor80)

Factorial space 1x2 with contributing points (80)

Wssa with contributing point on anacor80

Wssa for the 59 variables

Factorial space 1x2 for the 59 variables

Contributing variables on the two first dimensions (anacor59)

Factorial space 1x2 with contributing points (59)

Wssa with contributing point on anacor59

Wssa for the 48 variables

Factorial space 1x2 for the 48 variables

Contributing variables on the two first dimensions (anacor48)

Factorial space 1x2 with contributing points (48)

Wssa with contributing point on anacor48

Wssa for the 16 variables

Factorial space 1x2 for the 16 variables

Contributing variables on the two first dimensions (anacor16)

Factorial space 1x2 with contributing points (16)

Wssa with contributing point on anacor16

Main results

- Common points:
- Increasing of the fit / explained variance when the number of variables is reduced
- Opposition of variables on the first factor / axis

Differences:

- Opposition of variables not always conserved
- Circle representation vs cross representation

Toward an explanation

- represented on a first dimension The greatest part of the 'variance' of the data is similarly
- The 'correlations' for the remaining dimension are:
- Independent in the anacor
- Interdependent in the wssa
- last two ones report(s) In a two or three dimensions solution, the last one or the
- A part of the remaining 'variance' in the anacor
- All the remaining 'variance' in the wssa
- shapes of representation) tound (non conservation of oppositions and different Those two last points explain together the differences we

Conclusions

- Importance of the data coding
- The structural aspect of data